
Exact results for a checkerboard Ising model with crossing and four-spin interactions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 L1087

(http://iopscience.iop.org/0305-4470/18/17/005)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 09:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) L1087-Ll093. Printed in Great Britain 

LETTER TO THE EDITOR 

Exact results for a checkerboard Ising model with crossing and 
four-spin interactions 

Hictor J Giacomini 
Instituto de Fisica de Rosario IFIR, CONICET-UNR, Pellegrini 250, 2000 Rosario, 
Argentina 

Received 13 September 1985 

Abstract. A seven-parameter Ising model with crossing and four-spin interactions on a 
checkerboard lattice is mapped by a duality transformation onto a general eight-vertex 
model, which has only five independent parameters. In a six-dimensional subspace of the 
Ising model (for which the corresponding eight-vertex model satisfies the free fermion 
condition) an exact solution is found. 

Spin and vertex models formulated on a checkerboard lattice are more general and 
difficult to treat than those defined on a square lattice. This is caused by the staggered 
structure of the checkerboard lattice. The only exact solutions of systems on this type 
of lattices are the Ising model with nearest-neighbour ( N N )  interactions (Utiyama 1951) 
and the critical q state Potts model with N N  interactions (Maillard and Rammal 1983). 
Moreover while an exhaustive classification of the solutions of the star-triangle relation 
for two-component vertex and spin models on the square lattice has been carried out 
(Krichever 1981, Sogo er a1 1982, Maillard and Garel 1984), such a classification has 
not-yet been done for staggered models. (As is well known, if the statistical weighs 
of a two-dimensional model satisfy the star-triangle relation, the model can be exactly 
solved (Baxter 1982).) Hence it is of interest to obtain exact results for this type of 
staggered model. In this letter an exact solution of an Ising model with crossing and 
four-spin interactions, formulated on a checkerboard lattice, is presented. The model 
is defined as follows. Consider 2 N  Ising spins on a square lattice with periodic 
boundary conditions, with a Hamiltonian having a checkerboard-type symmetry, as 
shown in figure 1. 

The four spins a, a’, a” and a’’’ surrounding each shaded square of figure 1 interact 
with spin-reversal invariant interactions, which can be written, in the most general 
case, as 

E(u,  U’, U”, U’’’) = -J,WU”- J~W’U‘’’ - J 3 ~ ” ~ ” 1  - J ~ W U ‘  - J~uu”’ - J~U’LT’’ - J ~ U W ’ U “ ~ ‘ ‘ .  
(1) 

The interactions are depicted in figure 2. The partition function is 

c’ - P E  ( a, a‘, a“, an’) 

where Z‘ indicates a sum over all the shaded squares of the lattice, and P = l/kBT. 
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Figure 1. General checkerboard lattice. Each shaded square contains the interactions 
shown in figure 2. 

a a' 

Figure 2. Interactions contained in a shaded square in figure 1 (the four-spin interaction 
J, is not shown). 

The geometrical invariances of the lattice under 90" and 180" rotations, as well as 
specular reflection, lead to the following symmetry relations for the partition function 

2123456 = z431265 

z1256 = z2165 

2 1 2 3 4  = 2 2 1 4 3  

z3456 = 2 4 3 5 6  
( 3 )  

where each subscript i (  = 1, .  . . , 6 )  stands for the dependence on the parameters Ki. 

the following relations hold 
Moreover, taking into account the periodic boundary conditions, it is evident that 

where in the last relation j ,  1 = 1,. . . ,4 and 1 >j .  The key step of this work is to 
transform the model (2) into a general eight-vertex model without a staggered structure. 
With this aim we first relabel the spins u, as well as geometrically changing their 
locations on the lattice, which is divided into two sublattices A and B, as shown in 
figure 3. We denote by u, and u2 the spins on sublattices A and B, respectively. Now 
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Figure 3. Vertices denoted by full (open) circles form sublattices A (9) respectively. 

all the u2 spins are translated to their N N  site in the right horizontal direction. Thus, 
in each vertex of sublattice A there are now two spins u1 and u2. The resulting lattice 
is sublattice A, i.e. a square lattice, whose elementary cell is shown in figure 4. 

The interactions present in the elementary cell are 

E ‘ =  - J ~ ( u , c T ~ +  u ~ ( T ? )  - J ~ ( U , U ~ +  u ; u ~ )  - J ~ u ~ v ;  -J4(c+,u2+ u~u;+ u;u~+ UYUY) 
-J5( c+lu{ + u ; u ~ )  - J ~ ( C T ~ U :  + u;u?) - J ~ c ~ ( + ~ u ; u ;  ( 5 )  

and the partition function is now given by 

Z =  exp(x  K,u,u;’+ K 2 u { u 2 + K 3 u ~ u . ; ) + K 4 u 1 u 2  
0 1 . u 2  X 

where Z, indicates a sum over the sites of the new lattice. Expressed in this form the 
model does not have a staggered structure, and this fact simplifies the following 
calculations. 

Figure 4. Elementary cell of the resulting lattice after translating the spins u2: there are 
two spins on each vertex. 
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We now perform a duality transformation on (6) by using a procedure previously 
introduced (Giacomini 1985). The method is straightforward and only the fundamental 
steps of the calculations will be given. First the Boltzmann factor in (6) is linearised 
in the spins U, and u2. Then seven new variables, which take the values zero and one, 
are introduced in order to expand the resulting products. In this way the spins U, and 
u2 can be decoupled and thus exactly decimated. (For further details it is remarked 
that this type of transformation is extensively discussed in the examples analysed in 
the papers cited above.) 

After expressing the new variables in term of Ising spins, the partition function is 
given by 

~ = 2 - , ~  exp[N(K,+ . . .+ K,)] C ~ ( 1 + a l u , ) ( l + a 2 a 2 )  . . . ( 1 + a 7 U 7 )  (7) 
ul. .... U7 x 

where II, indicates a product on the sites of the lattice, ai = exp(-2Ki) and the U, are 
Ising spins constrained by the equations 

o,a;uju~u,u;u7u; = 1 u;a2u;u4u6u~u7uy = 1 @a, 6) 

U, = alu;u;u~u;u7u; (9) 

u l ( . ~ u 2 ( . ; u ~ u ~ a , u ; ~ 6 ~ ~ u ~ u ~  = 1. (10) 

u1 u1‘3u6~7 U, + u2u3 U5 u7. ( 1 1 )  

which are imposed on each site of the lattice. From ( s a )  we get 

and therefore (8 b) becomes 

This constraint can be simplified by changing the spin variables as follows 

Taking (9) and ( 1 1 )  into account, the partition function (7) and the constraint (10) 
are now given by 

Z = 2 P N  exp[N(K,+. . .+K7)] n ( 1 + ~ , c + l a 3 a 6 u 7 ) ( 1 + ~ 2 u 2 2 ( T 3 u 5 ( T 7 )  
ul~‘2~~3~u5~~6~u7 x 

x ( 1  + (Y3u3) (  1 + a4(T1(T;a3U5)( 1 + (Y5U5)( 1 + (YgU6)(1+ (Y7U7) (12) 

u1u;u2u; = 1 (13) 

and 

Now the spins U,, U,, U6 and u7 are decoupled in (12) and can be decimated. Moreover 
the solution of (13) is u1 = uu‘ and u2 = uu” where U is an Ising spin. Hence, after 
some lengthy, but straightforward, algebra, (12) is expressed as 

z = [ t  exp(K, +. . .+ K ~ ) ] ~  fl w(u, U’, a”, U”’) 
u f  

where the product is over all faces of the square lattice A, and 

w(u, ( T I ,  U’’, U”’) = 1 + a2a3a5a7(T(Tn+ a1ff3a6a7cuf+ ala2a5ff68’Uf’f f f ] f f 4 a 5 a 7 ( T ’ d t ’  

+ 030!40!5a6uUnt+ a2a4a6(Y7u’’u0’ + ff~(Y2a3a4L+(T’u’’d1’ (15) 
with a, U’, U” and U”’ being flur spins round a face of the square lattice A, as shown 
in figure 5 .  

However Zu llf w(u, U‘, U”, U’’’) is the partition function of the general eight-vertex 
model expressed in tems of Ising spins (Baxter 1981), with the vertex weights wi  given 
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Figure 5. U, U‘, U” and U”’ are four spins round a face of the square lattice A. These spins 
are the final variables in the duality transformation procedure. 

w1= w(++++) wg = w(+++- )  

0 3  = w(+--+) 0, = w(++-+ )  

wq= w ( + + - - )  ws = w(-+++). 

w2 = w(+-+-) w6= w(+-++)  

Therefore (14) can be written as 

Z ( K 1 , .  . . , K7) = RNZsV(w1 , .  . . , us) (17) 

where R = 4 exp( K, + . . . + K,). 
The general eight-vertex model has only five independent parameters, because 

without loss of generality we can get w 5  = and w7 = os, and the weights can be 
multiplied by an arbitrary overall factor (Fan and Wu 1970). Therefore, even though 
we started with a model with seven independent parameters, the mapping by duality 
produced a model with only five independent ones. This fact reflects some ‘hidden’ 
symmetry of the model, which is not simply related to local properties of the lattice, 
as is the more common situation in statistical mechanics. This type of ‘hidden’ symmetry 
occurs also in the free fermion model (Bazhanov and Stroganov 1985) which is 
formulated with four independent parameters and the exact solution can be expressed 
only in terms of three effective variables. 

Another example of a ‘hidden’ symmetry is the S, invariance of the q-state checker- 
board lattice Potts model (Maillard and Rammal 1984, 1985). In these two cases the 
symmetry can only be seen from closed expressions for the partition function, while 
for the model (2) presented in this work, the ‘hidden’ symmetry can be detected from 
a duality transformation. On the other hand, the symmetry relations (3) and (4) lead, 
by using (17), to known symmetry relations of the eight-vertex model (Fan and Wu 1970) 

~ * v ~ ~ s v ~ ~ , ~ , 3 , 4 ~ = ~ * v ~ 3 , 4 , ~ , ~ ~ = ~ s v ~ ~ , ~ , 4 , 3 ~ = ~ ~ v ~ 4 , 3 , 2 , 1 )  

zsv(l, 2,3,4) = zSv(1, 2,4,3) = 2,,(3,4,2,1) = zSv(2, 1,3,4) 

Zsv(5,6,7,8) = 2 d 7 , 8 , 5 , 6 )  

(18) 
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where i = 1,  . . . , 8  stands for the dependence on the vertex weights mi. There are several 
interesting particular cases of the duality relation (17). When K5 = K6 = K7 = 0 one of 
the spin variables can be decimated in (6). The anisotropic triangular Ising model 
results after the decimation. In this case, the corresponding eight-vertex model also 
becomes the triangular Ising model and the known self-duality relation for this system 
is obtained. When some of the parameters K,,  K 2 ,  K 3  or K,  are equal to CO, the same 
result is reached. If we take K7 = CO in (6) we get the Baxter model exressed in terms 
of Ising spins (Baxter 1982). In this case the corresponding eight-vertex model obtained 
by duality also reduces to the Baxter model and the known self-duality relation for 
this system is obtained. On the other hand, the general eight-vertex model can be 
exactly solved when the free fermion condition 0,02+ w3w4 = 0 5 6 & +  w7wg holds (Fan 
and Wu 1970). 

Taking into account (15 )  and (16), the free fermion condition is satisfied if we 
impose over the Ki parameters the following constraint 

eXp[ -4( & f K7)] + eXp[ -4( K6 -k K7)] - eXp[-4( K5 Ks)]  = 1 .  (19) 

This condition is invariant under the symmetry relations (3) and (4). Therefore we 
have the exact solution of (2) when the constraint (19) holds. Using the exact expression 
of the free fermion model free energy (Fan and Wu 1970) and equation (17), the 
free energy of the model (2) is given by 

1 
pf(K1, . . . , K 7 )  = lim - log 2 

N-oo N 

= log( R )  -7 Jo2rdo J O 2 = d ~  ~ o ~ [ u + ~ ~ c o s ( ~ ) + ~ c c o s ( ~ ~ )  
8T 

a = w : + w : + w : + w :  d = ~ 3 ~ 4 -  0708 

b =  w l 0 3 - ~ 2 ~ 4  e = w1w2-  w5w6 (21) 
C = W1W4- W2W3.  

The weights wi are given by (16), and the equation (19) must be satisfied. The phase 
transition condition of the free fermion model is w , + w 2 + w 3 + w 4 =  
2 max{w,, w2, w3 ,  U,}, and therefore the critical condition for the model (2) is 

2(1+LY1Q2CT3CT4)=max{wl, U 2 9  0 3 ,  0 4 1  (22) 

with U, ,  w2,  w3 and 0, given by (15) and (16). This critical variety is invariant under 
the symmetry relations (3) and (4). 

Since the vertex weights are analytic functions of the parameters Ki, the critical 
behaviour of (2) is the same as the free fermion model. Another soluble case of the 
eight-vertex model is the Baxter model, which is obtained by setting w , = w 2  and 
w 3  = 0,. However in this case the parameters K i  must satisfy the relations K 3  = K4 
and K ,  = K 2 + f i v  (when K,  f CO; the case K7 = CO has been mentioned above), i.e. they 
take values in a non-physical region. Nevertheless the exact solution of (2) for complex 
values of the parameters could be of interest in the domain of the mathematical 
properties of exactly soluble models (Baxter 1981). 
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Finally, it is of interest to investigate whether the exact solution presented above 
satisfies the star-triangle relation, as is the case with all known exactly soluble models 
(Baxter 1982). 

I am grateful to Professor Eytan Domany for a critical reading of the manuscript. 
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